

Meeting requirements in an IEC 61850 station bus SAS

Answer to questions Q1-11 & Q1-12

Carlos Rodríguez del Castillo – calrodriguez@ree.es

INDEX

- **1. Overview of the paper**
- 2. Question Q1-11
- 3. Question Q1-12

Paper D2-01_07

Main points

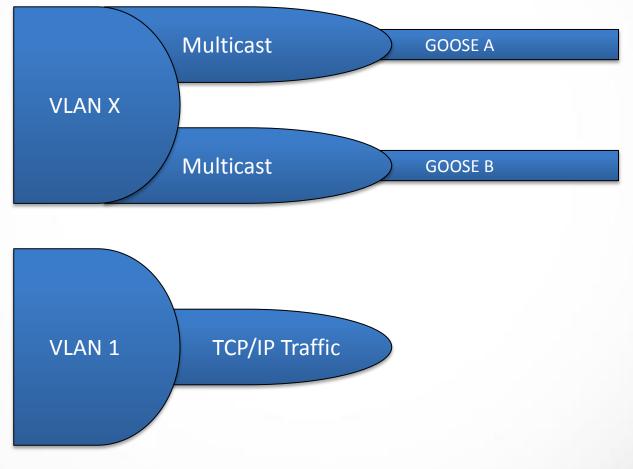
- The paper studies a real project commissioned in 2015 in Perú
- IEC 61850 station bus solution
- Relationship between SAS and network requirements
- How the engineering solution and the network architecture are related
- Use of VLAN and multicast address assignment to GOOSE policy for maintenance, testing and traffic control
- Technical limitations (no PRP in several IEDS, ...)

Goal: find a network architecture that meets requirements

Paper D2-01_07

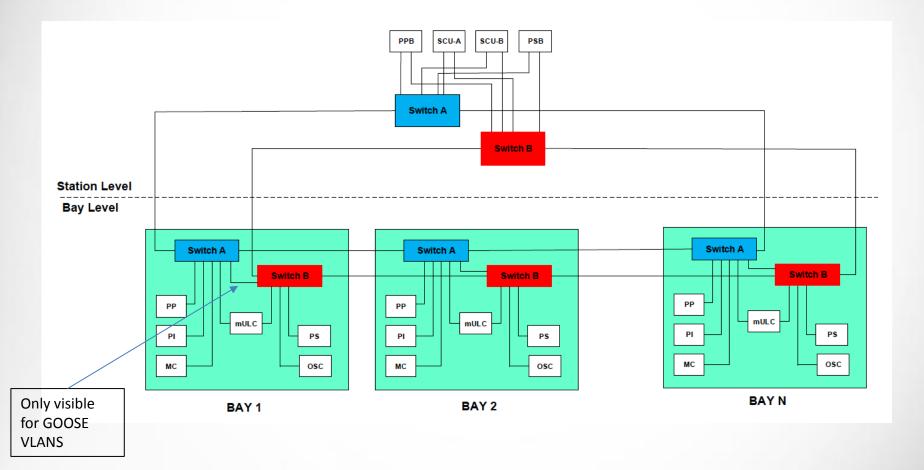
Starting point

- Nueva Tintaya and Socabaya 220 kV double bus bar substations
- Multivendor IEC 61850 station bus solution
 - Up to twelve (12) different IED models/manufacturers interconnected
- No PRP in protection IEDs. PRP in telecontrol IEDs.
- Two independent Protective System for each bay
- Two independent Differential Bus Bar Protection IEDs
- Use of Goose as much as possible and MMS for telecontrol

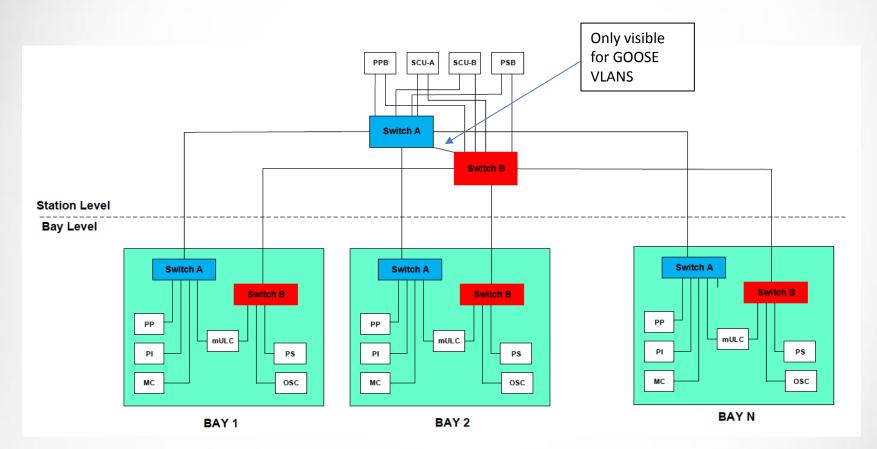

Paper D2-01_07

Structure

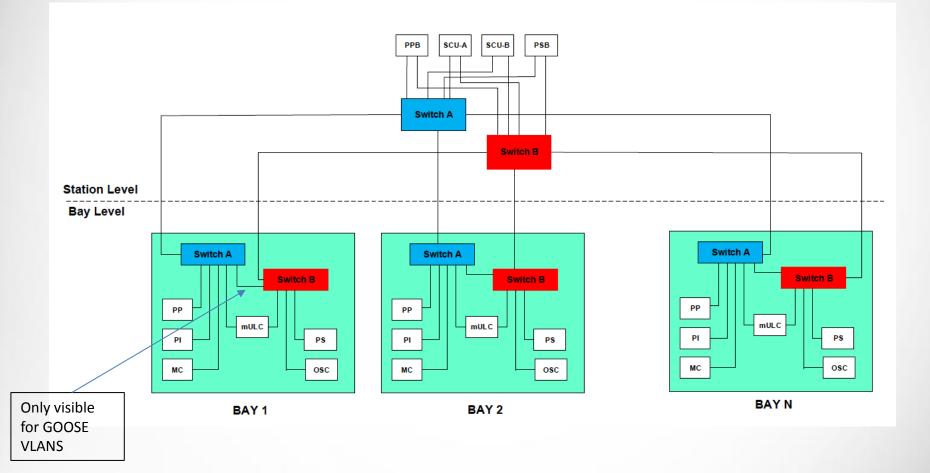
- 1. Context
- 2. Requirements
- 3. Protection & Control subsystem architecture
- 4. Telecontrol subsystem architecture
- 5. IEC 61850 interchanges and interfaces
- 6. Network architecture study
- 7. Adopted architecture
- 8. Lessons learned



VLAN and multicast address policy



Double ring with connection at bay level



Double star with core switches connected

Double star with connection at bay level

Selection

- Double star with connection at bay level
- Star is more deterministic than the ring
- Using VLAN the traffic can be controlled
- Maintenance actions in one bay does not affect the whole system
- Connection at bay level is better than at station level
- The cost of the studied solutions is quite similar
- The best option is having PRP in all IEDs

INDEX

- 1. Overview of the paper
- 2. Question Q1-11
- 3. Question Q1-12

Q1-11: Based on your experience, is it possible to give us a general overview of advantages and disadvantages of the different topologies and also when to deploy them?

Objective

- To compare network topologies
- Select the key indicators
- Take into account Substation Automation System requirements
- Take into account fault tolerance situations N-1, N-2, ...
- There is no perfect solution
- Need a compromise
- Study each topology

Key indicators

- Cost
- Complexity (configuration, wiring)
- Reparations and substitutions
- Adding/Removing new bays
- Testing
- Availability under faulty situations N-1, N-2, ...
 - Protection functions
 - Telecontrol functions

Availability Key indicators

- Protection functions
 - PDIF (87B, 87L, 87T)
 - PDIS (21)
 - RBRF (50S/62)
 - PTUV (27)
 - PTOV (59)
 - RREC (79)
 - RSYN (25)
- Telecontrol functions
 - Remote control of primary elements
 - Data acquisition

Other issues

- IEC61850 implementation
 - Station bus: The network does not affect tripping and main protection functions
 - Process bus: The network affects tripping and is key for the system
- Maintainability
 - Star topologies are better than rings: repairing a switch in a star only affects locally, with the ring all the system is affected (and out of service while the ring is being reconfigured)
- Traffic control: better with a star
- The more redundant the system is, the more difficult to isolate IEC 61850 edition 1 IEDs is

Comparison (I)

Issue	Single ring	Double star	Double ring
Deterministic	Poor	Good	Poor
Traffic control	Poor	Good	HSR- Not possible
Maintenance only affects locally	No	Yes	No
Fault recovery time	Yes	DAN – No SAN – No recovery	HSR – No
Basic Configuration	Easy	Easy	Easy
Adding/Removing bays	Carefully	Easy and simple	Carefully
Link fault tolerance	Yes	DAN – Yes, SAN - No	Yes

Comparison (II)

Issue	Single ring	Double star	Double ring
Switch fault	Yes, partial	DAN – Yes SAN – No	HSR – Yes (IED fault)
Station bus	Suitable	Suitable	Suitable
Sampled Values	Not suitable	Suitable	Not recommended
Digital process bus	Not suitable	Suitable	Suitable
IEC 61850 ed. 1 IED isolation ¹	Possible ²	Possible ³	Not possible ⁴
IEC 61850 ed.2 IED isolation ¹	Yes	Yes	Yes

¹ Connected to the network

² Using a special VLAN for isolating the IED

³ Multicast filtering for some IEDs; special VLAN for others; ⁴ Possible if the HSR ring is done with switches

Comparison (III)

Issue	Single ring	Double star	Double ring
Wiring	Depend on the layout	Easy	Depend on the layout
Cost	Cheaper ¹	Expensive	Cheaper ²
Switch CPU load	High	Medium	High (if used)
IED CPU load	Low	DAN – Medium SAN – Low	High
Network bandwidth available	100%	100%	50%
Connecting testing equipment	Easy	Easy	HSR – Difficult and affects the system

¹ Except if two switches are used at bay level (one for protection system A, one for protection system B)

² There are no switches, although IEDs are more expensive due to CPU load; If switches are used, is as expensive as Double star

Conclusions

- Rings look good but be careful
 - Difficult for maintenance works at bay level
 - No easy traffic control
 - Recovery time and network bandwidth
- Stars look easy but be careful
 - Without redundancy there is no fault tolerance
 - PRP is the appropriate protocol
- For sampled values process bus we recommend not using rings
- For digital process bus we recommend to use a star
 - Two independent stars, for protection systems A and B, no PRP
 - Two independent stars with PRP , for protection systems A and B

But there is not a perfect solution

INDEX

- 1. Overview of the paper
- 2. Question Q1-11
- 3. Question Q1-12

Q1-12: What is your advice to deal with the complexity of the network to minimize its possible impact on the continuity of the services?

Options

- Physical isolation of sampled values network
- Traffic segmentation
 - Use of VLAN
 - Use of multicast filtering (if needed)
- Traffic pattern analysis (especially for ring topologies)
- Traffic control policy
 - Do not send information to IEDs that does not need them
 - Route Goose messages
- PRP networks: connect the minimum SAN IEDs as possible

Thank you very much for your attention!!

RED ELÉCTRICA DE ESPAÑA

Carlos Rodríguez del Castillo – calrodriguez@ree.es