

D2 – 01 _ 09

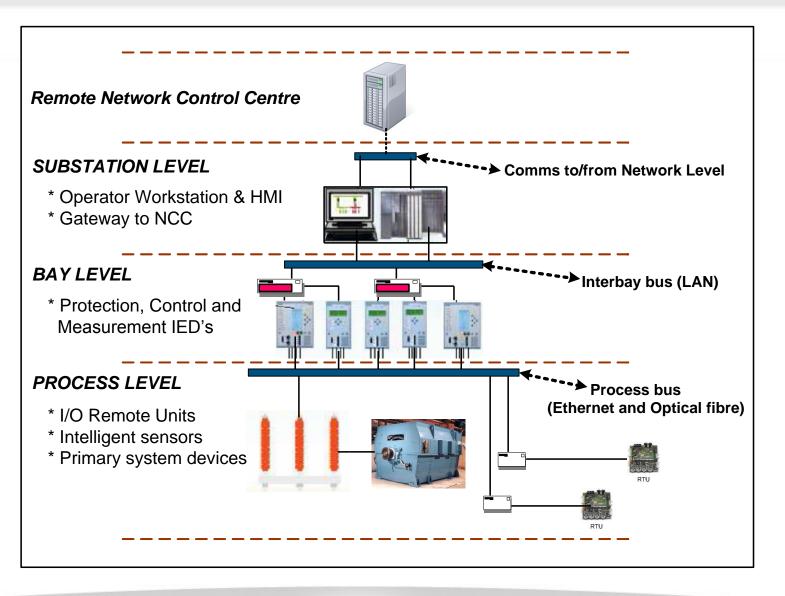
LIMA 2015

Preferential Subject 1: Telecommunication networks for Time – Critical applications

EFECTS OF THE NETWORK TOPOLOGY IN THE RECOVERY TIME A PRACTICAL CASE STUDY

Daniel Espinosa

Jaume Darné


Esaú Marcelo

Modern SAS

LIMA 2015

The Bus Topology

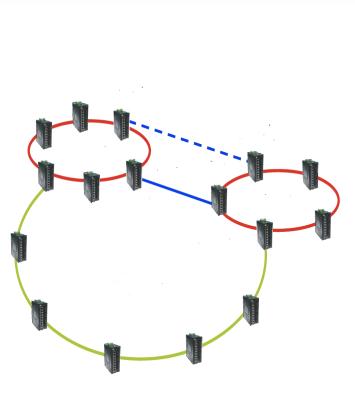
LIMA 2015

□ Three main possibilities:

Single and double star

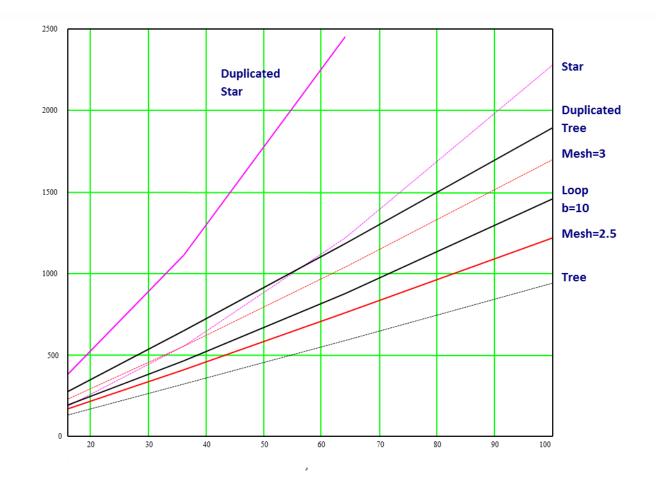
- Only 1 or 2 Main Switches
- High Number of ports per switch
- High performance Switch necessary

Single and double three

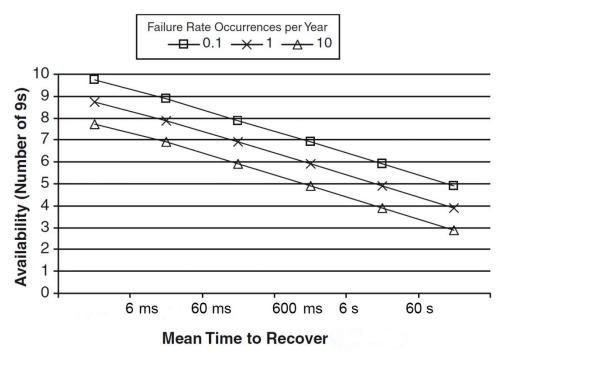

- IEDs are chained towards the Bay Level
- Latency in transversal Communications
- Improved resiliency compared with star

Single and multiple rings

The Ring Topology LIMA 2015



- Standard de facto in Industrial Ethernet Networks
- Single element failure protected
- Multiple variants
 - Single ring
 - Multiple rings chained
 - Ring of the rings
- Interconnecting points does not increases significantly the risk
- Deterministic topology
- Balanced trade off between efficiency and cost



Cigre The Cost of the Topology LIMA 2015

cigré Recovery time and Availability LIMA 2015

Application layer 20%
Presentation layer 5%
Session Layer 5%
Transport Layer 15%
Network Layer 25%
Link Layer 10%
Physical Layer 20%

Failure distribution in **OSI** layers

Prasant Mohapatra's Network Research Group. UC Davis

Main Protocols Resume LIMA 2015

• RSTP + IEEE 802.1D

- Popular and Universal use
- Compatible with all Topologies
- Ring enhancements boost the recovery times up to 10 ms.

MRP IEC 62439-2

- Single ring topology only. Uniform ring
- ✓ R.T. depends of the switch count: 14 Sw / 10 ms, 50 Sw / 30 ms
- Ethernet Filtering Database (FDB) flushed during Transition

PRP IEC 62439-3

- Two independent networks with any topology
- Zero packet loss but un-deterministic in some cases
- Protocol implemented at the Endpoints. No recovery time

HSR IEC 62439-3

- ✓ Standard HSR unpractical outside of ring topology.
- ✓ Implemented on two port IEDs with bridging functionality
- ✓ Zero packet loss. Un-deterministic. Duplicates the ring traffic

7

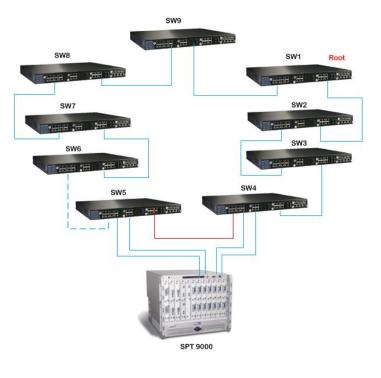
Other Ring Protocols LIMA 2015

MOXA's V-ON PROTOCOL

- Initially developed for multicast streaming on uniform ring
- ✓ Based on previous Turbo- Ring and Turbo-Chain protocols.
- ✓ Recovery time: 20 to 50 ms

KYLAND's DT-RING

- Ring specific protocol. Uniform Ring
- ✓ Recovery time: 40 ms for a 15 nodes network
- Strongly dependent of the position and device count


KORENIX's SUPER RING

- ✓ Works with single or multiple uniform rings
- ✓ Recovery time 5 ms. Packet loss during transition
- Proprietary patented protocol suite

Test Bed for Case 1LIMA 2015

TEST BED CONDITIONS

- Test with 9 switches on ring topology.
- ✓ All ports not involved in the ring are in EDGE mode.
- All switches have equal cost, except SW 1
- ✓ Due that RSTP opens the ring between SW5 and SW6

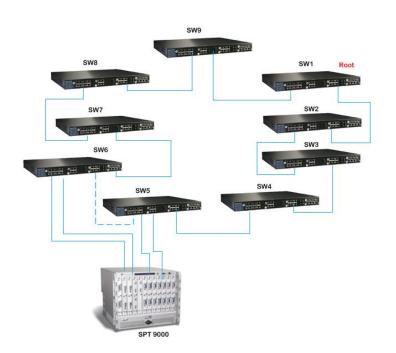
TRAFFIC PROFILE

- 2 separate streams of 100 KPS Unicast + 1 KPS Multicast each.
- Measurements taken on the Multicast packets

Test Results

LIMA 2015

Test Number	Link Recovery ms)	SW1 power shutdown (ms)
1	8.2	9.87
2	5	8.42
3	4.7	10.33
4	5.5	8.19
5	5	11.33
6	5.43	8.08
7	7.51	8.68
8	5.42	11
9	7	10.59
10	6.24	8.04
11	6.07	9.96
12	7	10.23
13	4.33	9.9
14	5.29	11
15	6.2	9.38
16	8	9.32
17	5.14	10.91
18	6	8.48
19	8	10.31
20	6.36	11.17
Average	6.12	9.76



Ş

Test Bed Case 2

LIMA 2015

TEST BED CONDITIONS

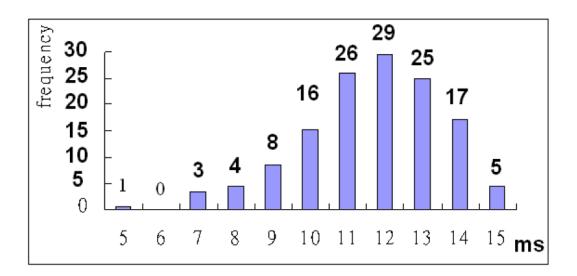
- Test with 9 switches on ring topology.
- ✓ All ports not involved in the ring are in EDGE mode.
- All switches have equal cost, except SW 1
- ✓ Due that RSTP opens the ring between SW5 and SW6

TRAFFIC PROFILE

- ✓ 2 separate streams of 100 KPS Unicast + 1 KPS Multicast each.
- Measurements taken on the Multicast packets

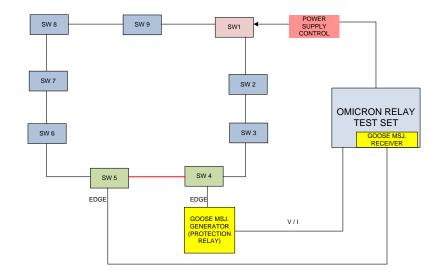
Test Results Case 2 LIMA 2015

Test Number	Disconnecting point	Recovery time ms
1	SW1SW9	8.57
2	SW1SW2	9.86
3	SW2SW3	10.47
4	SW3SW4	9.9
5	SW4SW5	6.52
6	SW6SW7	12
7	SW7SW8	7.58
8	SW8SW9	8.14
9	SW9SW1	7.93
10	SW1SW2	10.86
11	SW2SW3	10.22
12	SW3SW4	9.88
13	SW4SW5	6
14	SW6SW7	9
15	SW7SW8	8.39
16	SW8SW9	11.1
17	SW9SW1	9.75
18	SW1SW2	10.37
19	SW2SW3	10.56
20	SW3SW4	10.38
Average		9.37


Case 2 with 134 Switches

LIMA 2015

Recover Time


- Average time: 12.0297ms
- Min time: 5.65ms
- Max time: 15.88ms

Test Bed using Omicron LIMA 2015

TEST BED CONDITIONS

- Test with 9 switches on ring topology.
- ✓ All ports not involved in the ring are in EDGE mode.
- All switches have equal cost, except SW 1
- ✓ Due that RSTP opens the ring between SW5 and SW6

TRAFFIC PROFILE

- Omicron Tester provokes a relay trip at the same time disconnect the power supply of the root switch.
- Measurements taken on the GOOSE messages sent by the relay

14

Test Results Case 3LIMA 2015

	Measured Value (ms)	Total Recovery Time (ms)
Average	60.68	38.27
Maximum	64.20	41.79
Minimum	51.70	29.29
Deviation	4.00	4.00

Conclusions

LIMA 2015

- Ring topology is de facto the Industry Network Standard.
- RSTP (802.1D) stills in use with some improvements back compatible
- ✓ Other protocols (IEC62439-#) are only auto compatibles
- Traffic Engineering and appropriate setting of parameters becomes necessary for efficient networks
- Use of VLANs improves the efficiency and resilience of the network.
- Tests carried out shows a suitable recovery time of RSTP based switches
- Test results shows that recovery time seems independent of the switch position in the ring

LIMA 2015

Thank you!

