

Конференция Energynet

Секция «Технологии распределенной энергетики»

СЕМИНАР D2 РНК СИГРЭ «Информационные технологии и телекоммуникации в электроэнергетике: решения и перспективы с учетом опыта СИГРЭ».

Возможности и опыт эксплуатации современной цифровой аппаратуры ВЧ-связи по ЛЭП.

к.т.н. Назаров Юрий Валерьевич

Ялта. 24 июня 2015 года

OOO «НПФ «Модем» www.npfmodem.spb.ru

Достоинства ВЧ-каналов

- проверено временем (с 1922 года);
- высокая надежность среды передачи;
 - работа при обрывах линий (стихийные бедствия, ледяной дождь);
 - канал связи собственность энергетиков;
- быстрое строительство канала;
 - среда передачи провода ЛЭП;
- быстрое время восстановления;
- низкая стоимость.

Достоинства цифровых ВЧ-каналов

- возможность передачи данных с высокой скоростью (9,6; 64 кбит/с);
- отсутствие шумов ВЧ-тракта в телефонном канале;
- непрерывный контроль состояния канала связи

Использование ВЧ-каналов

- каналы связи в распределительных сетях 35-110 кВ;
- при невозможности подвески ВОЛС на старых опорах;
- оптимизации стоимости построения технологической сети связи;
- повышение надежности телекоммуникационных систем в условиях стихийных бедствий (ураганы, ледяные дожди).

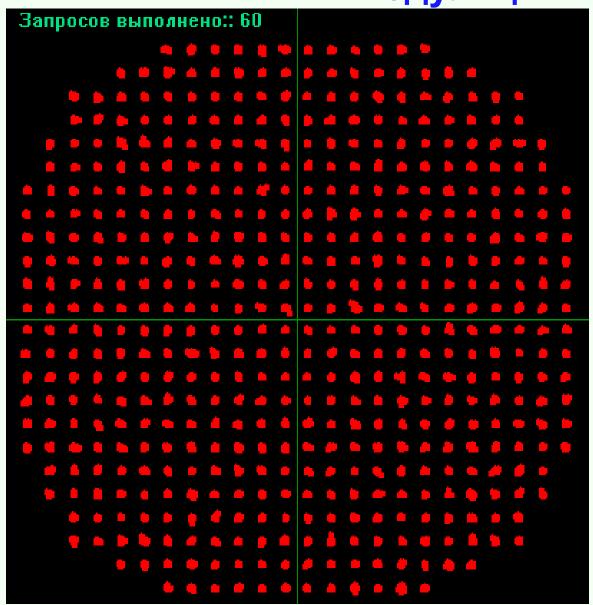
Работа в условиях обледенения ВЛ

Выдержка из письма специалиста Нижновэнерго о работе аппаратуры ЦВК-16 во время гололедного дождя в Центральном регионе России в декабре 2010 года:

«... во время обледенения, на выведенной линии, с неизвестно где оборванными проводами и неизвестно как наложенными заземлениями, с конденсаторами спрятанными в кокон льда и заградителями в «шубе» из льда и снега, ЦВК работала в аналоговом режиме с уровнем АРУ ~68 дБ»

Использование ВЧ-каналов

Техническая брошюра СИГРЭ рабочей группы D2.34 «Telecommunication and information systems for assuring business continuity and disaster recovery» (Телекоммуникационные и информационные системы для обеспечения непрерывности бизнес-процессов и восстановления после аварий).


Меры по созданию высоко-надежных телеком-муникационных систем:

- Разные среды передачи и технологии (ВОЛС, РРЛ, PLC);
- Географическое разнесение маршрутов;
- Резервирование каналов оборудованием разных производителей;

Регламентирующие документы

Россия (ГОСТ, СТО ФСК ЕЭС)	Мир (IEC, CIGRE)
roccus (roc1, cro φck Eσc)	Mup (IEC, CIGRE)
CTO177- 2014 Технологическая связь.	IEC 62488 Power line communication systems for
Типовые технические требования к аппаратуре	power utility applications.
высокочастотной связи по линиям	Part 1 (2012-11): Planning of analogue and digital power
электропередачи	line carrier systems operating over EHV/HV/MV electricity grids
СТО045-2010 Руководящие указания по	Part 2 (2017-05): Analogue power line carrier terminals
выбору частот высокочастотных каналов по	(APLC)
линиям электропередачи 35, 110, 220, 330, 500	
и 750 кВ	(IEC 60495- 1993 Single sideband power-line carrier
	terminals)
CTO052- 2010 Методические указания по	TEG (0.662 4000 PL)
расчету параметров и выбору схем	IEC 60663- 1980 Planning of (single-sideband)
высокочастотных трактов по линиям	power line carrier systems
электропередачи 35, 110, 220, 330, 500 и 750 кВ	
CTO178- 2014 Технологическая связь.	
Руководство по эксплуатации каналов	
высокочастотной связи по линиям	
электропередачи 35-750 кВ	

КАМ-модуляция

КАМ-512 9 бит

F_B=4 кГц F_T=3200 Гц 28800 бит/с

C/Ш = 36,5 дБ

Характеристики каналов передачи данных

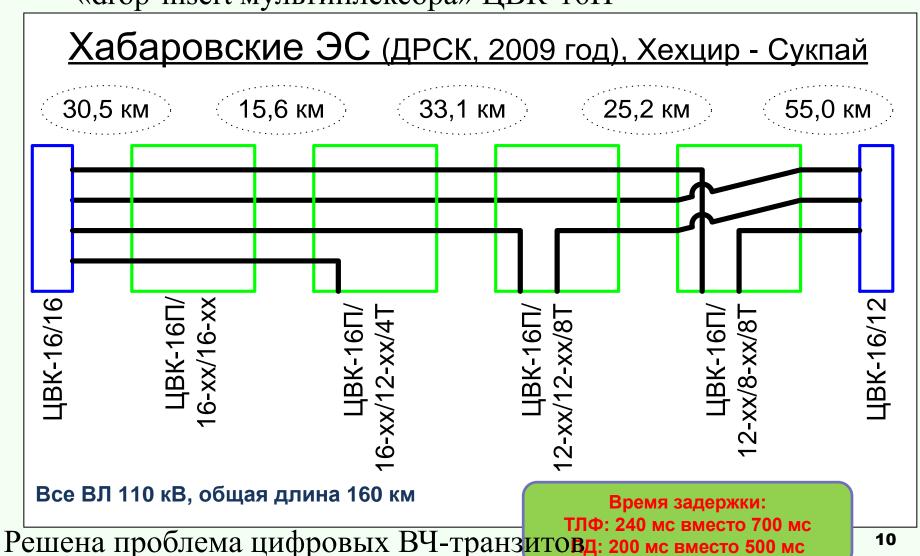
Параметр	ЦВК-16	ЦВК-16М/8	ЦВК-16М/16
Базовая полоса	4 кГц	8 кГц	16 кГц
Максимальная скорость, кбит/с	28,8	51,2	102,4
Время задержки, мс	85	50	20
Прохождение ping, мс (Ethernet)	230	130	50
Отгружено полукомплектов	> 600 с 2008 года	32 с 2011 года	30 с 2011 года

каналы пд удовлетворяют треоованиям со-сос по времени доставки телеинформации 1-2 с

- Использование каналов передачи данных
 - телемеханика (АСТУЭ);
 - АИИС КУЭ (АСКУЭ);
 - регистраторы аварийных событий;
 - MMO;
 - Электронная почта.

Передача ТМ в протоколах МЭК-101 и МЭК-104

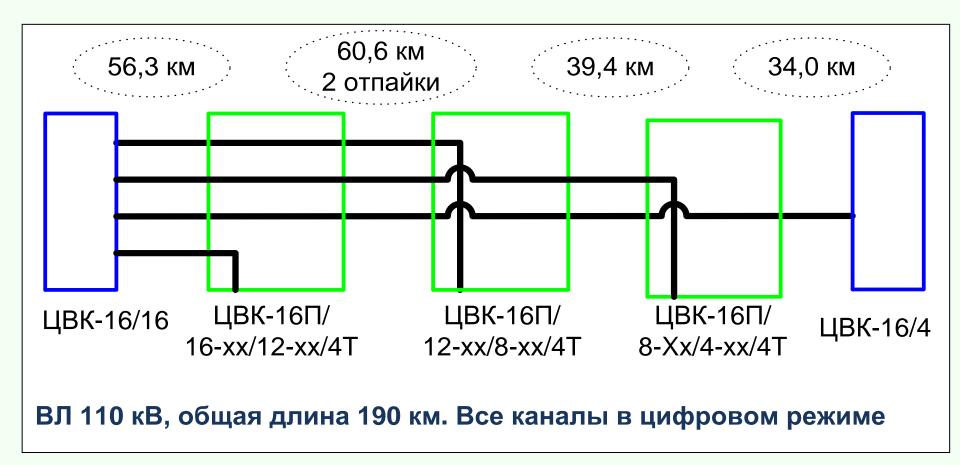
<u>МЭК-101 (9,6 кбит/с)</u>						
Эноргосистома	Количество			Prof. B. OKOFIEWOTOLIMO	Число ПС	
Энергосистема	TC	ТИ	ТУ	Ввод в эксплуатацию		
Оренбургэнерго	250	200	40	c 2007	> 50	
Вологдаэнерго	264	14	82	c 2007	14	
Ленэнерго	210	616	50	c 2008	> 10	
Тюменьэнерго	3770	2540	140	c 2007	> 20	


<u>МЭК-104 (64 кбит/с)</u>							
Quantaguatawa	Количество			Prog B ovoggvotovijajo	Число ПС		
Энергосистема	TC	ТИ	ТУ	Ввод в эксплуатацию	ЧИСЛО ГІС		
Томская РК	201	324		c 2012	4		
Ленэнерго	100	20	80	c 2014	2		
Тулаэнерго	60	15	40	c 2014	3		
Сверловэнерго				c 2012	3		

Подтверждена возможность работы цифровых ВЧ-каналов даже в условиях отечественных сетей (проблема заземления на ПС, большого числа источников шума в среде передачи)

9

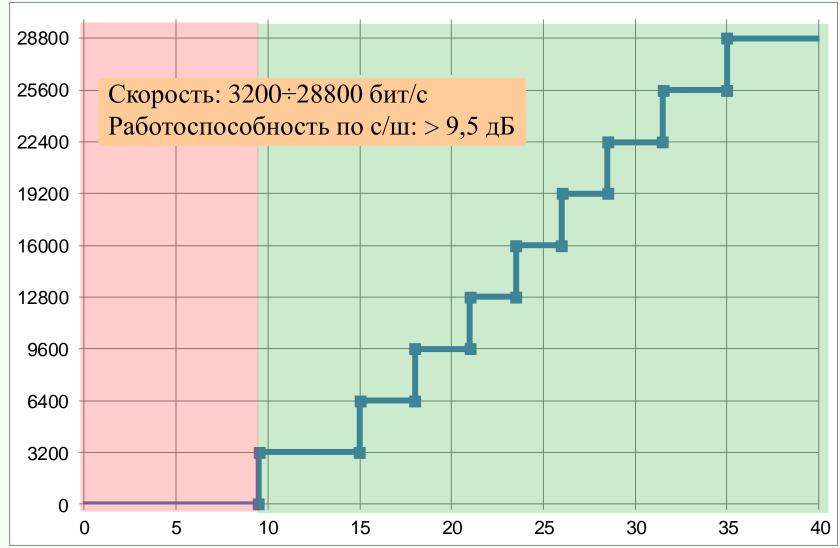
Реализованные варианты схем


Возможно построение цифровых «ВЧ-сетей» на базе «drop-insert мультиплексора» ЦВК-16П

10

Реализованные схемы. Киргизия 2013

Схема связи для ПС медно-золотого проекта «Бозымчак» (юго-запад Кыргызской Республики Джалал-Абадской области)



4 подстанции обеспечены диспетчерской телефонной связью и каналами телемеханики

Мультиплексор, абонентские окончания

- Телефонные окончания (до 3-х в каждой полосе):
 - **4х-проводное окончание (**-13/+4,3 или -3,5/-3,5 дБн**)**;
 - FXS/FXO;
 - Е1 (построение полностью цифровых ВЧ-каналов).
 - характеристики:
 - вокодер по рекомендации G.729D (6,4 кбит/с);
 - встроенная эхокомпенсация;
 - внутриполосная сигнализация АДАСЭ;
 - передача сигналов факса, DTMF.
- Передача данных (до 4-х в каждой полосе):
 - Низкоскоростные модемы ТМ (100-1200 бод);
 - MMO (1,2÷230,4 кбит/с), RS-232/485/422;
 - Ethernet (100/1000)
 - Сухие контакты (до 8 ПРД + 8 ПРМ).
- Мультиплексирование до 7 временных каналов в каждой полосе

Адаптация для повышения надежности

Соотношение сигнал/шум, дБ

Работа в условиях заземления ВЛ

Параметры линии:

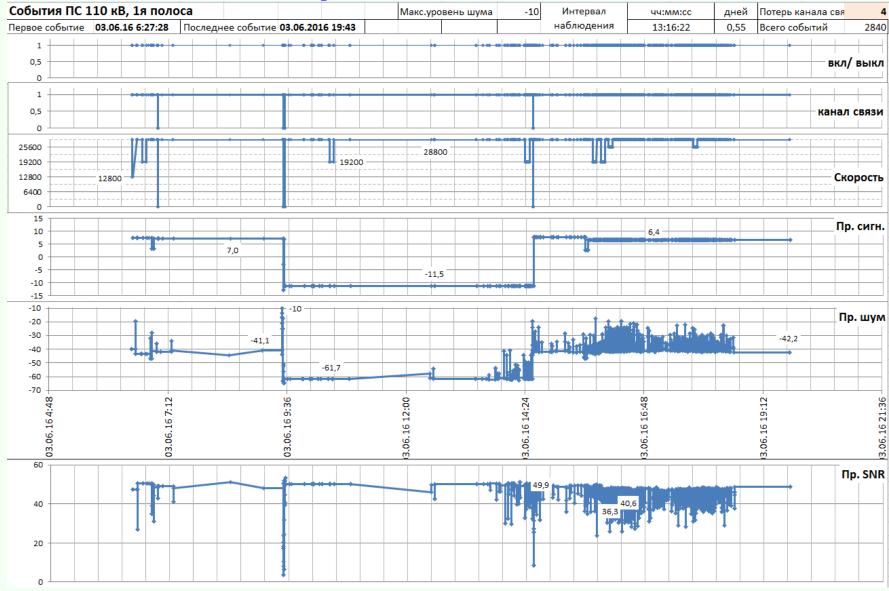
линия: 110 кВ

протяженность: 70,2 км (1 ВЧ-обход)

Частоты канала: 480-488/432-440 кГц

Скорость канала: 28,8 кбит/с

Период наблюдения: 20.04.2016-настоящее время


Длительность наблюдения: 2 месяца

Коэффициент неготовности канала: 0,0005

Коэффициент готовности на скорости 28,8 кбит/с: 0,9977

Коэффициент готовности канала: 0,9995

Работа в условиях заземления ВЛ

Параметры линии:

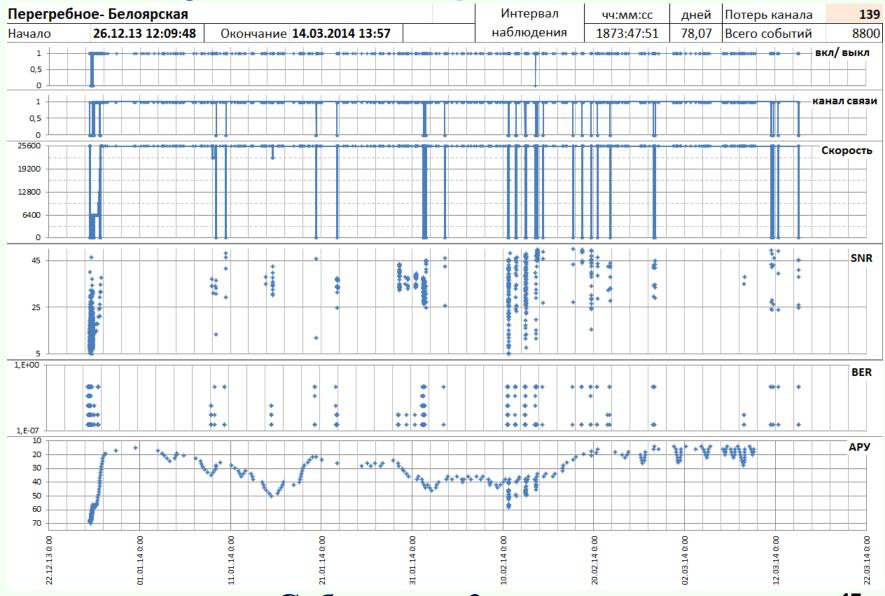
линия: 110 кВ

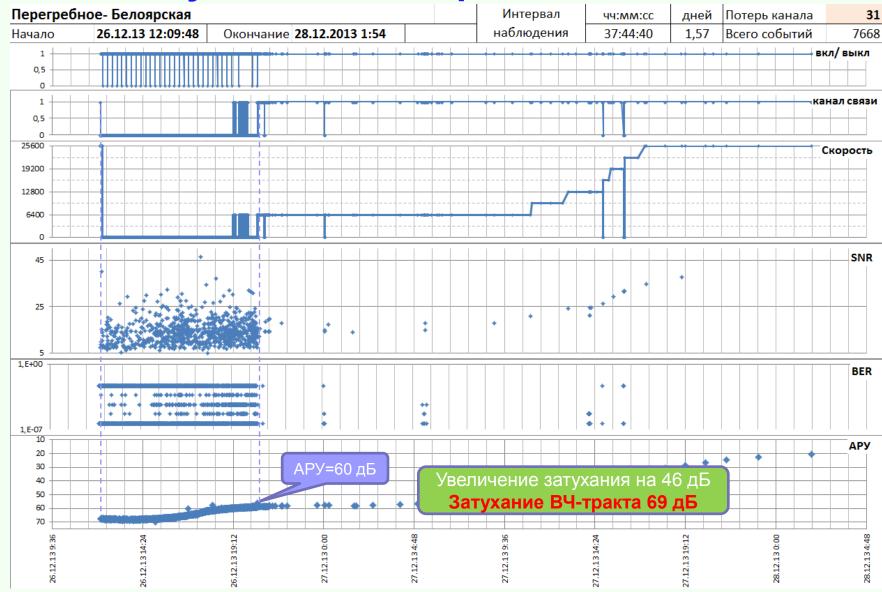
протяженность: 125 км (2 отпайки)

тип провода: АС-120

Частоты канала: 316-320/416-420 кГц

Скорость канала: 25,6 кбит/с


Период наблюдения: 26.12.2013-14.03.2014


Длительность наблюдения: 78 дней

Коэффициент неготовности канала: 0,0052

Коэффициент готовности на скорости 25,6 кбит/с: 0,9787

Коэффициент готовности канала: 0,9948

- Практически подтверждена необходимость большого диапазона АРУ (до 80 дБ) при работе в условиях гололеда (в настоящий момент норма 40 дБ);
- Требуется обязательный расчет ВЧ-трактов при проектировании, реконструкции каналов связи (с возможной сменой частотного диапазона) с целью обеспечения высокого коэффициента готовности в условиях гололеда;

Работа на линии 220 кВ (канал МЭК-101)

Параметры линии:

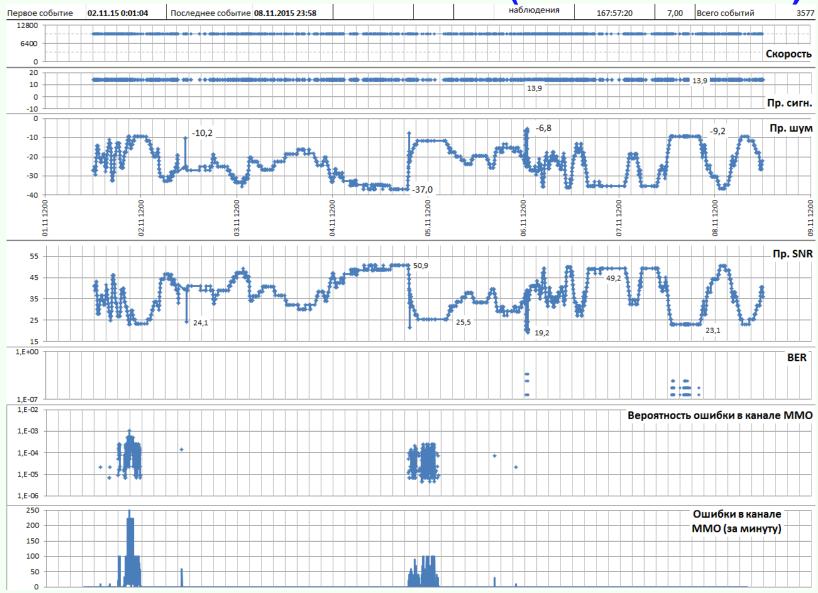
линия: 220 кВ

протяженность: 70 км

Частоты канала: 432-444/608-620 кГц

Скорость канала: 9,6 кбит/с (фиксированная)

Период наблюдения: 14.05.2015-настоящее время


Длительность наблюдения: более 1 года

Контроль работоспособности канала связи - тестер цифровых потоков Acterna EDT-135

Коэффициент неготовности канала: 0,00005

Коэффициент готовности канала: 0,99995

Работа на линии 220 кВ (канал МЭК-101)

Результаты эксплуатации

- Надежная работа канала 9,6 кбит/с по ВЛ 220 кВ на ПС 500 кВ в течение 1 года (коэффициент готовности канала 0,9999 (!);
- Передача канала МЭК-101 (9,6 кбит/с) в периоды снегопадов, ливневых дождей, выпадения гололеда, грозовой активности;
- Контроль работы канала непрерывный по тестеру цифровых каналов (G.821, G.826 ES, SES, ESR, SESR);
- Требуется уточнение методики приема каналов в работу (долговременная проверка, проверка при заниженном уровне передачи). Установление норм и порядка приема каналов;
- Повышение ответственности (производителей, проектировщиков) за неработающие цифровые ВЧ-каналы.

Результаты эксплуатации

По результатам эксплуатации цифровых каналов ВЧ-связи можно отметить:

• возможно построение **надежных цифровых** каналов ВЧсвязи (требования СО-ЕЭС не ниже 0,98);

Системы ВЧ-связи эффективно использовать:

- построение надежных каналов связи;
- в качестве резервных на магистральных каналах;
- с качестве основных и резервных каналов для связи с труднодоступными и тупиковыми подстанциями;
- на старых ЛЭП, где использование ВОЛС невозможно по весовым или ветровым параметрам;
- при модернизации существующих ВЧ-каналов.

Назаров Юрий Валерьевич

ООО «НПФ «Модем» пр. Коломяжский, д.27А тел./ф.+7 (812) 340-01-02 тел./ф.+7 (812) 340-01-03 тел./ф.+7 (812) 340-01-04 тел.+7 (931) 25-МОДЕМ

email: <u>nazarov@npfmodem.spb.ru</u> <u>www.npfmodem.spb.ru</u>

skype: npfmodem